Calcium Silicate-Based Cements Associated with Micro- and Nanoparticle Radiopacifiers: Physicochemical Properties and Bioactivity
نویسندگان
چکیده
Objective. The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the chemical composition by energy dispersive X-ray spectrometry (EDS-X). Results. CSCM and CSCR presented larger particle sizes than MTA. Hydroxyapatite deposits were found on the surface of some materials, especially when associated with the radiopacifier with ZrO2 nanoparticles. All the cements presented calcium, silicon, and aluminum in their composition. Conclusion. Both calcium silicate-based cements presented composition and bioactivity similar to MTA when associated with the radiopacifiers evaluated.
منابع مشابه
Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblast response and analyses of apatite coating.
PURPOSE Calcium-silicate cements have been recently proposed for application in dentistry as root-end filling and root-perforation repair materials. The aim of this study was to investigate the effect of ageing of experimental calcium-silicate cements on the chemistry, morphology and in vitro bioactivity of the surface, as well as on osteoblast viability and proliferation. METHODS Two experim...
متن کاملEffect of Silver Nanoparticles on Physicochemical and Antibacterial Properties of Calcium Silicate Cements.
Mineral trioxide aggregate (MTA) and Portland cement (PC) are calcium silicate cements. They have similar physicochemical, mechanical and biological properties. The addition of zirconium oxide (ZrO2) to PC provides radiopacity. Silver nanoparticles (AgNPs) may improve some properties of cements. The aim of this study was to evaluate the effect of AgNPs on physicochemical/mechanical properties a...
متن کاملGlass Ionomer Cements with Improved Bioactive and Antibacterial Properties
Chen, S. 2016. Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1413. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9670-8. Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradatio...
متن کاملEnhanced bioactivity of glass ionomer cement by incorporating calcium silicates
Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive denta...
متن کاملBulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions.
Polymethylmethacrylate (PMMA) cements are widely used in spinal surgery. Nevertheless, these types of cements present some documented drawbacks. Therefore, efforts have been made to improve the properties and biological performance of solid PMMA. A porous structure would seem to be advantageous for anchoring purposes. This work studied the bulk physicochemical, mechanical and interconnectivity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015